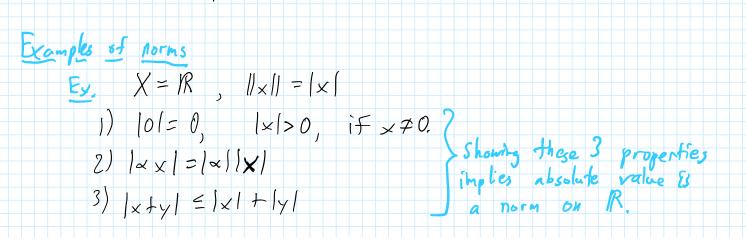
MAT B44 - 2019 Prof. Yun William Yu 2019-Sep-24 (lecture) Tuesday, September 24, 2019 3:04 PM Outline ? 0. Norms and fixed points 1. Proof. Contraction -> fixed pt 2. Examples of contractions 3. Picard iteration Last time: We gave examples of norms, fixed pts, and contractions. A norm on a vector space X has to satisfy 3 properties $|| 0 || = 0, || \times || > 0 \quad \text{for } \times \neq 0,$ 2) || x x || = |x | || x || for x G R and x G X YXty 3) ||x+y|| = ||x|| + ||y|| for x, y & X This time: Claim: Also implies the inverse triangle inequality | ||x|| - ||y|| | = ||x - y || proof. |x|| = ||(x - y) + y || = ||x - y || + ||y || $|| \times || - || \cdot || \le || \cdot \cdot \cdot \cdot ||$ Similarly $||y|| - ||x|| \le ||y-x|| = ||x-y||$ \Rightarrow $\|x\| + \|y\| \le \|x - y\|$



 $|| \times || = \sup_{t \in I} |s^{t_n}(t) - I| = Z$ continuous functions on I Note The function $|| \times ||_{t \in I} | \times (t) |$ is a norm on C(I) (Hw) "This means that we can define "distances" b/t functions The "distance" between two functions is the maximum distance between them on a closed interval. $\underbrace{E}_{X}(t) = t^{2}, \quad Y(t) = t, \quad I = [0, 1]$ $\Rightarrow t = \frac{1}{2} \text{ at criff pt.}$ $g(\frac{1}{2}) = -\frac{1}{4}$ $\Rightarrow \sup_{\substack{t \in I}} |t^2 - t| = \frac{1}{4}$ (iff) A sequence of functions Xn (f) converges to X(t) if and only if $\lim_{n \to \infty} ||x_n - x|| = \lim_{n \to \infty} \sup_{t \in I} |x_n(t) - x(t)| = 0 \qquad (uniform Convergence)$ Turns ont (real analysis) that a Cauchy sequence under this metric converges to another continuous function, so the space is complete. Thus, the vector space C(I), together with $||x|| = \sup_{\substack{t \in I \\ t \in I}} |x(t)|$ (for Iis a Banach space We can now reason about CCI) using tools of Banach spaces Def. A fixed point of a mapping K=C=X->C is an element $x \in C$ s.t. K(x) = x,

Def. A contraction is a mapping
$$K: C \leq X \rightarrow C$$
 where there
exists a contraction constant $\emptyset \in [0,1)$ s.t.
 $\||K(L) - K(L)|\| \leq \emptyset \||X - Y\||$, $x, y \in C$.
Metaton: $K^{*}(x) \geq K(K^{*-1}(x))$, and $K^{*}(x) \geq x$.
Lest time we had a function
 $K(x) \geq |000 + \frac{x}{2}|$, which we informally called a contraction
More formally, let $C \equiv [0, 10^{6}]$.
Note $K(x) \in C$ for all $x \in C$, so if is a mapping $K \geq C \leq X \rightarrow C$.
The contraction constant is $\emptyset = \frac{1}{2}$ because
 $\||K(L) - K(L)|\| = \||x00 + \frac{x}{2} - (1000 + \frac{x}{2})\| = \||\frac{x}{2} - \frac{x}{2}\| = \frac{1}{2}||X - Y||$.
So, $K(x) \geq 1000 + \frac{x}{2}$ is a contraction on $C \equiv [0, 10^{6}]$
What about $C = [0, 10]$?
No, Because $K(0) = 1000 \notin [0, 10]$
Lest time, we had a function
 $K(x) \equiv J = J$.
The interaction on $C \equiv [0, 1]$?
M. Because $|J0^{-}JT| = |0^{-}I| = 1$, so if deals contract them.
What about on $C \equiv [0, 5, 1.5]$?
Yes. First adde that $0.5 \leq J \propto \leq 1.5$ if $x \in [0, 5, 1.5]$
Also, for $x \geq 0.5$, $\frac{1}{\sqrt{x} + \sqrt{y}} \leq \frac{1}{\sqrt{2} + \sqrt{z}} = \frac{1}{\sqrt{2}} \times 0.707$
Now $|Jx - Jy| = \frac{1 \times y}{\sqrt{x} + \sqrt{y}} \leq \frac{1}{\sqrt{2}} |x - y|$.
Thus, $K(x) \equiv J \equiv x$ contraction on $C \equiv [0, 5, 1.5]$?
Now $|Jx - Jy| = \frac{1 \times y}{\sqrt{x} + \sqrt{y}} \leq \frac{1}{\sqrt{2}} |x - y|$.
Thus, $K(x) \equiv J \equiv x$ is a contraction on $C \equiv [0, 5, 1.5]$.
When checking a contraction on $C \equiv [0, 5, 1.5]$.

mapping 1) Pute points in C closer together by a multiplicative factor 2) maps into the subset C.

Theorem : Banach fixed pt theorem Coontractive principle)

(Tesch 2.1) Let C be a (nonempty) closed subset of a Barach space X and let $K: C \rightarrow C$ be a contraction. Then H has a unique fixed point $\overline{X} \in C$ s.t. $\|K^{n}(X) - \overline{X}\| \leq \frac{O^{n}}{1 - O} \|K(X) - X\|$, $X \in C$.

Proof. See pre-lecture notes, or Thursday lecture,

As long as we have a contraction in a closed subset of a Banach space, there exists a unique fixed pl

Let's apply the contraction principle to some examples Ex. Consider a mapping $K: R \rightarrow R$, defined by $K(x) = (000 \pm \frac{x}{2})$. Prove that for any $x \in R$, $\frac{1}{100} t^n(x) = 2000$. In order to use the contraction principle, we need a closed subset C = R s.t. K is a contraction on R. R is a closed subset of R, and $\frac{1}{K(x)-K(y)} = \frac{1}{2} |x-y|$ for all $x, y \in R$. So there exists exactly one fixed pt. Note, $\frac{1}{K(200)} = 2000$, so $\overline{x} = 2000$ is a fixed pt. Thus, all starting points in R converge to 2000 under repented iterations of K.

Ex. Consider a mapping K=R->R, K(x)=Jx. Prove that for any $x_0 \ge 0.5$, $\lim_{n \to \infty} K^n(x_0) = 1$.

In order to use the contraction principle, we need a closed subset of R on which this a contraction. Obviously, R doesn't work,

Lemma: If $f: C \leq \mathbb{R} \to C$ has a continuous derivative on a closed interval C, and $\forall x$, $|f'(x)| \leq \Theta$ for some constant $\Theta \leq 1$, then f is a contraction.

proof. Let $x, y \in C$, By the Mean Value theorem, $\exists c \in [x, y]$ s.t. |f(x) - f(y)| = |f'(c)||x-y|. But $f'(c) \leq 0 < 1$, so $|f(x) - f(y)| \leq \Theta |x-y|$,

Back to K(x)= Jx. Note that K(x)= - 1/25x.

Thus, $|K'(x)| = \frac{1}{25x} \leq \frac{1}{25x}$ for all $x \geq \frac{1}{2}$. $\Rightarrow |K'(x)| \leq \frac{\sqrt{2}}{2} \approx 0.707$ for all $x \geq \frac{1}{2}$.

Also $K(x) \in [0, 5, \infty)$ for all $x \in [0, 5, \infty)$. Thus K(x)is a contraction on $C = [0, 5, \infty)$.

Since K(I) = I is a fixed point, $I \to \infty$ $K^{n}(x) = I$ for all $x \ge 0.5$.

Reall: We proved earlier that C(I) is a Banach space. of functions Now we just need to find a contraction where fixed pt is the solution to an OPE.

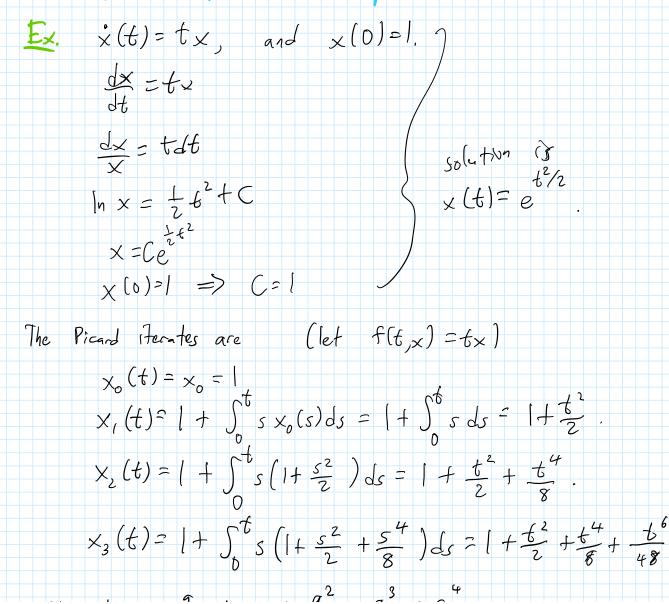
Picard iteration: Consider an initial value problem (IVP) $\dot{\mathbf{x}} = f(t_{\mathbf{x}}) \quad \mathbf{x} \in (t_{\mathbf{y}}) = \mathbf{x}_{\mathbf{y}},$ where $x, t \in \mathbb{R}$, and $f \in C(U, \mathbb{R})$ where $U \subseteq \mathbb{R}^2$ is an open subset of \mathbb{R}^2 and $(t_0, x_0) \in U$. Note: We consider here XER. The proof we give also works with

Note: We consider here
$$x \in \mathbb{R}$$
. The proof we give also work with minor medition two $x \in \mathbb{R}^n$, $f \in \mathbb{C}$ (U, \mathbb{R}^n) , where $U \in \mathbb{R}^{n+1}$. This means that existence and uniqueness will hold firm all first-order systems. At the beginning of the quivalent first-order systems. Thus, this existence and uniqueness proof will apply to all QDEs under contain technical conditions.
Let's integrate both sides with respect to t .
This integrate both sides with respect to t .
 $x(t) - x(t_0) = \int_{t_0}^{t} f(s, x(s)) ds$.
This integral equation is equivalent for $x(t_0, x(s)) ds$.
This integral equation is equivalent for $x(t_0, x(s)) ds$.
This integral equation is equivalent to $x(t_0, x(s)) ds$.
This integral equation is equivalent to $x(t_0, x(s)) ds$.
Let's where function $x(t_0, x(s)) ds$.
This integral equation is equivalent to $x = f(t, s) ds$.
This integral equation is equivalent to $x(t_0, x(s)) ds$.
The proof is a solution by a map $K : \mathbb{C}(U, \mathbb{R}) \longrightarrow \mathbb{C}(U, \mathbb{R})$.
 $K(x)$ $(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds$.
And the Proof iteration by a map $K : \mathbb{C}(U, \mathbb{R}) \longrightarrow \mathbb{C}(U, \mathbb{R})$.
 $x_1(t) = x_0$ $(the constant function through the scalar x_0 $)$.
 $x_1(t) = k(x_0)(t) = x_0 + \int_{t_0}^{t} f(s, x(s)) ds$.$

 $x_{2}(t) = K'(x_{0})(t) = K(x_{1})(t) = x_{0} + \int_{t_{0}} f(s, x_{1}(s)) ds$ $x_{3}(t) = k^{3}(x_{0})(t) = k(x_{2})(t) = x_{0} + \int_{t_{0}}^{t} f(s, x_{2}(s)) ds$

 $x_{m}(t) = H^{m}(x_{0})(t) = H(x_{m-1})(t) = x_{0} + \int_{t}^{t} f(s, x_{m-1}(s)) ds$

- The solution x(t) is a fixed pt. under Picard iteration, so if we can prove Picard iteration is a contraction, then that would immediately imply existence and uniqueness.
- But first, let's try a few examples of ficard iteration.



Note that $e^{a} = 1 + a + \frac{a^{2}}{2} + \frac{a^{3}}{3!} + \frac{a}{4!} + \dots$ $50 \ e^{-} = \left[+ \frac{t^2}{2} + \frac{t^4}{8} + \frac{t^6}{48} + \frac{t^8}{384} + \frac{t^{--}}{384} \right]$ So, the Picard sterates are slowly approximating the true solution. Ex. $\dot{x}(t) = t - x$, where x(1) = 2 $x_0 = 2$ $x_1 = 2 + \int_{1}^{t} (s - x_0) ds = 2 + \int_{1}^{t} (s - 2) ds = 2 + \left[\frac{s^2}{2} - 2s \right]_{1}^{t}$ $=\frac{t^{2}}{7}-2t+2-(\frac{1}{2}-2)=\frac{t^{2}}{2}-2t+\frac{7}{2}.$ $x_2 = 2 + \int_1^t (s - x_1) ds = 2 + \int_1^t (s - \frac{s^2}{2} + 2s - \frac{7}{2}) ds$ $= 2 + \int_{1}^{t} \left(-\frac{s^{2}}{2} + \frac{3}{5}s - \frac{7}{2} \right) ds = 2 + \left[-\frac{s^{3}}{6} + \frac{3}{2}s^{2} - \frac{7}{2}s \right]_{1}^{t}$ $=2\left(-\frac{t^{3}}{6}+\frac{3t^{2}}{2}-\frac{7}{2}t\right)-\left(-\frac{1}{6}+\frac{3}{2}-\frac{7}{2}\right)$ $=2+\frac{1^{3}}{6}-\frac{t^{3}}{6}+\frac{3t^{2}}{2}-\frac{7}{2}t=-\frac{t^{3}}{6}+\frac{3t^{2}}{2}-\frac{7}{2}t+\frac{2^{3}}{6}$